Increasing Resistant Starch in Wheat

Brittany Hazard Ph.D. Candidate Genetics Graduate Group University of California Davis

CWC Board Meeting September 4, 2014

Dubcovsky Laboratory

Wheat in Our Diet

WHEAT

Today, wheat is grown on more land area than any other commercial crop and continues to be the most important food grain source for humans.

WHEAT IS THE LARGEST PRIMARY COMMODITY

GLOBAL PRODUCTION IS APROX. 700 million tonnes

WHEAT PROVIDES 19% OF OUR TOTAL AVAILABLE CALORIES

Global production from 1961 to 2013

(image courtesy of: http://www.fao.org)

Wheat in Our Diet

 Starch is the major component of the wheat kernel (~50-70%).

 Improvements in starch composition have potential to deliver nutritional benefits.

Starch: Amylose and Amylopectin

(image courtesy of: Santelia and Zeeman, 2011)

Resistant Starch (RS)

- High-amylose starch → increased RS
- Inaccessible to α-amylase digestion
 - Component of dietary fiber

(image courtesy of: http://www.food-info.net/uk/carbs/starch.htm)

Health Benefits of Resistant Starch

Health Benefits of Resistant Starch

- Reduced risk of diseases
 - Diabetes, obesity, heart disease and cancers of the colon and rectum
- Benefits in the large intestine and systemic health benefits

Resistant Starch Content

Product	% Resistant Starch
Long grain rice (brown)	1.7
Rice pudding	0.2
Whole wheat breads	1.9 – 2.8
Refined grain products	0.2 - 1.1
Potato salad	1.0
Boiled potatoes	0.5
Legumes	3.4 – 3.5

(Hendrich, 2010)

Consumption of Resistant Starch

- Recommended dietary fiber in the US
 - -19 to 38g per day
 - < < 5% of Americans consume this
- Recommended resistant starch
 - Australia's Division of Human Nutrition
 - 20g per day
 - Americans consume ~5g per day

 Breads and cooked cereals/pastas contribute ~40% of RS intake

Starch Branching Enzyme II (SBEII)

 Catalyzes addition of branching points during amylopectin starch synthesis

SBEIIa and SBEIIb

Previous Studies: Transgenic Approach

- Amylose content in the wheat grain can be increased by down regulating *SBEII* transcript levels.
- Down regulation of SBEII genes by RNAi → increase amylose content (25-70%)
 - Bread wheat (Regina et al., 2006)
 - Durum wheat (Sestili et al., 2010)

High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats

Ahmed Regina*1, Anthony Bird*1, David Topping*1, Sarah Bowden¹, Judy Freeman⁵, Tina Barsby⁸, Behjat Kosar-Hashemi*1, Zhongyi Li*1, Sadequr Rahman*1, and Matthew Morell*¹¹

*Commonwealth Scientific and Industrial Research Organization, Food Futures National Research Flagthip, P.O. Box 93, North Ryde 1670, NSW, Australia: *Commonwealth Scientific and Industrial Research Organization, Plant Industry, G.P.O. Box 1600, Canberra ACT 2601, Australia: *Commonwealth Scientific and Industrial Research Organization, Human Nutrition, P.O. Box 10041, Adelaide BC 5000, SA, Australia: and Nilogenma UK Limited, 200 Science Park, Mitten Road, Cambridge CH4 062, United Kingdom

ESEARCH ARTICLE

Plant Biolog

Open Acces

ncreasing the amylose content of durum wheat hrough silencing of the SBElla genes

ancesco Sestili¹, Michela Janni¹, Angela Doherty², Ermelinda Botticella¹, Renato D'Ovidio¹, Stefania Masci¹,

Alternative approach: TILLING SBEII genes

 Commercialization of transgenic wheat has not yet been implemented

TILLING

- Targeted Induced Local Lesions in Genomes
- Induce mutations using a chemical mutagen
- Screen for mutations in SBEII genes

Combine SBEIIa + SBEIIb Mutations

A Genome B Genome

(Hazard et al., 2014)

Results

3.0%

2.5%

2.0%

1.5%

1.0%

0.5%

0.0%

Control

Results

Total Starch

(Hazard et al., 2014)

Hazard et al. 2014

- SBEIIa/b-AB line registered
 - PI # 670160
- Germplasm Resource
 - National Center for Genetic Resources
 Preservation (NCGRP)
 - Germplasm Resources
 Information Network
 (GRIN)

http://www.ara-grin.gov/cgi-bin/npgs.html/acchim1.pl?1917347 - 4730 bytes -

Goals for Current Experiments

Evaluation of SBEIIa/b-AB Mutant Line

- Agronomic characteristics
 - Yield trials in 3 California locations

- Quality characteristics
 - Collaboration with California Wheat Commission Milling and Baking Lab
 - Grain, semolina and pasta quality

Agronomic Characteristics

• 3 Locations

- Sacramento Valley in Davis, CA
- San Joaquin Valley in Five Points, CA
- Imperial Valley in Holtville, CA

• Yield Traits

- Total Yield
- Spike density
- Spikelet number
- Kernel number
- Kernel weight

Preliminary Results

Agronomic Characteristics

- Yield penalties are observed in SBEIIa/b-AB lines
- ~5% decrease in kernel weight
- ~5-10% decrease in overall yield

Grain and Semolina Quality Characteristics

1.434 8 3

- Grain Quality
 - Test Weight
 - Kernel Size Distribution
 - Protein
 - Ash
 - Hard and Vitreous of Amber Color (HVAC)
- Semolina Quality
 - Milling Tests
 - Speck
 - Color
 - Alveograph
 - Protein
 - Ash
 - RVA
 - Falling Number
 - Wet Gluten

Preliminary Results Grain and Semolina Quality Decrease in test weight (~3%) Decrease in semolina extract (~4%)

- Increase in falling number (~40%)
- Changes in alveograph parameters
- Changes in RVA parameters

Pasta Quality Characteristics

- Pasta Quality
 - Color
 - Cooked Weight
 - Cooking Loss
 - Firmness

Preliminary Results

Pasta Quality

- Increase in cooking loss (~20%)
- Increase in firmness (~12%)

Future Directions

- Test RS in pasta
- Gut fermentation study in rodents
 - Cecal size, cecal pH, short chain fatty acids, gut peptides...
- Transfer and test mutations in common wheat

(rat image courtesy of: http://www.criver.com)

Acknowledgments

People

- Dubcovsky Lab
 - Jorge Dubcovsky
 - Xiaoqin Zhang
 - Reza Naemeh
 - Josh Hegarty, Laurel
 Hoffman, and Junli Zhang
- California Wheat Commission
 - Claudia Carter
 - Teng Vang
 - Janice Cooper
- UC Research and Extension
 - Francisco Maciel
 - Steve Wright
- Regional Testing Program
 - Phil Mayo
 - Diane Prato-Mayo
 - Sam Fraser

Funding

Colorado Wheat Research Foundation Fellowship, ConAgra Mills, UC Davis Department of Plant Sciences, UC Discovery Grant, USDA-NIFA Triticeae Coordinated Agricultural Project, Henry A. Jastro Graduate Research Scholarship, California Wheat Commission